Tree Wind Power Generator
Currently, there is a growing demand for sustainable energy sources given the rising fossil fuel prices, carbon dioxide emissions, and energy security. In apt response to this critical issue, a renewable alternative energy innovation is receiving wide spread interest and attention. This innovation entails the manufacture of energy harvesting trees to capture both wind and solar energy (Alternative Energy, 2009). The technology behind this; bio-mimicry is an emerging science using nature to alleviate human suffering. Using bio-mimicry techniques, scientists have come up with an artificial tree functioning as a passive solar-wind harvester. The harvested energy is stored and later converted into high value energy form.
Energy is harvested from a wide range of sources including water, wind, and solar among other sources. These methods have been efficient as far as energy harvesting is concerned but, scientists are still looking for methods of harvesting energy using fewer resources from recycled products and other living organisms (Markham, 2012 ). In line with this, the use of piezoelectricity; ability of materials such as bone, wood and ceramics to generate electric fields in response to mechanical strain is being embraced. In this study, the feasibility of using biologically inspired kinetic sculptures to harvest energy by swaying in the wind is examined.
Thesis One
The peak energy generated by tree wind power generators devices are sufficient to power homes and towns and are efficient to install and operate as well.
Abstract
Despite their minimal usage, piezoelectric devices have been recently implemented in several designs for fluid flow energy harvesting. They are currently used in harnessing micro- and milli-watts for powering remote sensor networks and small-scale electronic devices (Eco20-20.com, 2012). These electrical generators are designed in conventional cam-driven rotating turbine designs. Other designs have been implemented to operate entirely differently from rotating designs; the piezoelectric eel, an underwater sheet of piezoelectric polymer that oscillates in the wake of a bluff body. The oscillating blade generator resembles a stalk of corn, in which a piezoelectric transducer connects a steel leaf spring to leaf-like ears. The harvesting of power by using tree like wind mills is a unique idea and a passive wind power harvesting proposal (Bobolicu, 2009). In this scheme, the leaves from the wind tree each generate small power voltages and when combined are able to produce significant power. These trees core trunks are made of hollow iron pipes with the trunks and branches covered with faux plastic tree backs; for the trees to appear more aesthetic. The leaf nodes of these trees generate electric power via two means. The first is from the Advanced Fiber Composite (AFC) actuators on the leaves as the wind bends and shakes the leaves (Inhabitat.com, 2012). The second source of power is located at the leaf node on the artificial branch. At the node is a curved ceramic piezoelectric actuator generating power whenever the knobbed Teflon bearing at the leaf’s end moves in response to wind velocity. These wind trees as opposed to conventional wind turbines require low wind velocities to activate and can be erected in residential areas; therefore, reducing line loss and distance to the power grid, noisy wind turbine blade, and as well require lower maintenance costs (Hadhazy, 2009). The piezoelectricity they generate is clean, has low maintenance, simple to design, since the materials themselves generate electricity, and are long lasting since they do not wear out like solar cells. In addition, the wind tree power generators carry out most functions just like trees (BeyondFossilFuel.com, 2008). These include processes such as ground cooling and small animal habitat, while generating electricity in low wind velocity areas without the use of wind turbines; the artificial leaves generate voltages from low speed wind vibrations (Beeby, 2011). The wind trees’ peak power is associated with a fully developed Karman vortex street. Conversely, at low wind speeds, Karman vortex streets are only generated by the most downstream leaves (Eshi Internatioan Pte Ltd., 2011). The remaining leaves are surrounded by stagnant and recirculating regions, causing minimal cylinder vibration and a minimum in power for the array. At such low wind speeds, changes in spacing do not appreciably develop the vortex street. The movement of leaves is responsible for generating energy. They convert wind energy into electrical energy. In addition, the flapping motion of the leaves causes the instability of the aero-elastic system thus whenever wind blows and touches this bluff body, it leads to a vortex-shedding (Hobbs & Hu, 2011). Then the periodic pressure difference forces the wind tree leaves to synchronously bend in the downstream of the air wake. The AC signal is gleaned from the flapping leaf that is working on a periodic bending model, and the electrical energy is then stored in a capacitor after rectifying it with a full-wave bridge.
Thesis Two
Integrating schooling fish movement into the tree wind power generators model is likely to increase wind energy than the horizontal-axis turbines.
Abstract
The persistent and continual study of movement and currents created by schooling fish has led to an initiative to improve the efficiency and reduce the size of wind turbines (California Institute of Technology, 2010). This discovery, masterminded by California Institute of Technology aerospace engineer Professor John Dabiri, is likely to change the location of future wind farms, allowing them to be built in urban areas. According to this proposal, vertical axis also known as eggbeater style wind turbines produced 10 times more power than conventional horizontal axis; propeller operated turbines (Clabby, 2011).
This model is likely to be integrated with the tree wind generators in urban areas without relying on wind tunnels or computer modeling. As stated by Pritchard (2011), groups of vertical axis turbines in wind prone areas can generate approximately 47 watts of power for every square meter of land they occupy as opposed to standard propeller powered ones which generate about only two to three watts. In addition, wind farms using these old methods require large areas of land to space turbines apart to avoid aerodynamic interference caused by adjacent turbine wakes. Therefore, the wind energy entering most wind farms remain untapped (Pritchard, 2011).
In addition, integrating the proposed wind mills model with the wind trees by grouping vertical axis turbines very close to one another ensures they tap all the energy from the blowing wind and as well from wind above the farm. Besides, having the wind trees turbines moving in opposite direction to their neighbors increases their output and efficiency; the opposing spins decrease the drag on each turbine, allowing for faster spinning (Alternative Energy, 2010 ). This is possible after study the schooling movement of fish. Fish swimming in schools interact with vortices created by the fish next to them the same way turbines are proposed to work in this setting (Pasqualetti, 2000). Nevertheless, the challenge in this proposal is that the vertical wind turbines are inefficient individually than the propeller-style turbines, but, they are able to use turbulent winds from many directions. Vertical turbines work best when placed in stair-step-shaped patterns and when blades of alternating turbines rotate in different directions (Eriksson, Bernhoff, & Leijon, 2008). This allows them to extract energy from differently shaped vortices thrown by other turbines.
In line with this, organizing wind turbines arrangement based on the vortices shed by schooling fish is a welcome approach (Righter, 1996). This is so since, schooling fish align themselves to optimize forward propulsion, and when this is adapted in a turbine array it is likely to maximize energy extraction. Additionally, this would ensure the turbines funnel air to their neighbors, resulting in minimal energy lost due to turbulence. Moreover, turbines located far from the front are still able to generate the same power like the ones at the front row (Hinrichsen, 1981).
The vertical-axis turbines are also significantly more robust and less expensive and besides, they are less intrusive in the landscape, less visible to air-traffic control radar and could be less harmful to birds and bats (Moyer, 2010). However, further research should be conducted before this proposal is implemented in wind tree turbines. There is danger of collapse of the turbines, height among other factors that need further examinations before implementation (Sorensen, 2011). In line with this, the wind flow rates required for enhanced performance relative to horizontal-axis wind turbines should also be regularly attained before integrating this proposal with the wind tree model.
References
Alternative Energy. (2009, March 3). Artificial Trees to Harness Solar and Wind Energy. Retrieved October 29, 2012, from www.alternative-energy-news.info: http://www.alternative-energy-news.info/artificial-trees-to-harness-solar-and-wind-energy/
Alternative Energy. (2010, May 27). Scientists Study Fish Schools for Wind Farm Ideas. Retrieved October 29, 2012, from www.alternative-energy-news.info: http://www.alternative-energy-news.info/scientists-study-fish-schools-wind-farm-ideas/
Beeby, R. (2011, July 23). Star Scientist’s Smaller and Better Wind Turbine. Canberra Times, p. 4.
BeyondFossilFuel.com. (2008). Wind Tree Concept – Wind Power. Retrieved October 29, 2012, from www.beyondfossilfuel.com: http://www.beyondfossilfuel.com/windpower/wind_tree.html
Bobolicu, G. (2009, February 25). Artificial Trees to Harness Wind and Solar Power. Retrieved October 29, 2012, from www.softpedia.com: http://gadgets.softpedia.com/news/Artificial-Trees-to-Harness-Wind-and-Solar-Power-1525-01.html
California Institute of Technology. (2010, May 23). Schooling Fish Offer New Ideas for Wind Farming. Retrieved October 29, 2012, from www.sciencedaily.com: http://www.sciencedaily.com/releases/2010/05/100517152532.htm
Clabby, C. (2011, October). Analyzing Swimming Schools of Fish Inspired a California Biophysicist to try to Improve the Performance of Wind Turbines. Retrieved October 29, 2012, from www.americanscientist.org: http://www.americanscientist.org/issues/pub/a-fish-of-an-idea/1
Eco20-20.com . (2012). Harnessing Tree Power. Retrieved October 29, 2012, from www.eco20-20.com: http://www.eco20-20.com/Harnessing-Tree-Power.html
Eriksson, S., Bernhoff, H., & Leijon, M. (2008). Evaluation of Different Turbine Concepts for Wind Power.” Renewable and Sustainable Energy Reviews 12 (5), 1419-1434.
Eshi Internatioan Pte Ltd. (2011, April 25). Artificial Trees Pave New Future for Energy and Cleaner Environment. Retrieved October 29, 2012, from www.ecofriend.com: http://www.ecofriend.com/artificial-trees-pave-new-future-for-energy-and-cleaner-environment.html
Hadhazy, A. (2009, May 20). Power Plants: Artificial Trees that Harvest Sun and Wind to Generate Electricity. Retrieved October 29, 2012, from www.scientificamerican.com: http://www.scientificamerican.com/article.cfm?id=artificial-trees-harvest-sun-and-wind-energy
Hinrichsen, D. (1981). Blowing with the Wind. Ambio Vol.10, No.5, 246-247.
Hobbs, W.B., & Hu, D.L. (2011). Tree Inspired Piezoelectric Energy Harvesting. Journal of Fluids and Structures, 1-12.
Inhabitat.com. (2012). Power Flower Wind Turbine Trees could Domesticate Wind Energy. Retrieved October 29, 2012, from www.inhabitat.com: http://inhabitat.com/power-flower-wind-turbine-trees-could-domesticate-wind-energy/power-flowers-2/?extend=1
Markham, D. (2012, August 3). New Bladeless Wind Turbine Claimed to be Twice as Efficient as Conventional Designs. Retrieved October 29, 2012, from www.treehugger.com: http://www.treehugger.com/wind-technology/new-bladeless-wind-turbine-claimed-be-twice-efficient-conventional-designs.html
Moyer, M. (2010). Know the Flow. Scientific American 303 Vol. 30, 10-30.
Pasqualetti, M.J. (2000). Morality, Space, and the Power of Wind-Energy Landscapes. Geographical Review Vol. 90, No. 3, 381-394.
Pritchard, H. (2011, August 8). Schools of Fish help Squeeze more Power from Wind Farms. Retrieved October 29, 2012, from www.bbc.co.uk: http://www.bbc.co.uk/news/science-environment-14452133
Righter, R.W. (1996). Reaping the Wind: The Jacobs Brothers, Montana’s Pioneer ‘Windsmiths’. Montana: The Magazine of Western History Vol. 46, No. 4, 38-49.
Sorensen, J.N. (2011). Aerodynamic Aspects of Wind Energy Conversion. Annual Review of Fluid Mechanics Vol.43, 427-448.
Are you busy and do not have time to handle your assignment? Are you scared that your paper will not make the grade? Do you have responsibilities that may hinder you from turning in your assignment on time? Are you tired and can barely handle your assignment? Are your grades inconsistent?
Whichever your reason is, it is valid! You can get professional academic help from our service at affordable rates. We have a team of professional academic writers who can handle all your assignments.
Students barely have time to read. We got you! Have your literature essay or book review written without having the hassle of reading the book. You can get your literature paper custom-written for you by our literature specialists.
Do you struggle with finance? No need to torture yourself if finance is not your cup of tea. You can order your finance paper from our academic writing service and get 100% original work from competent finance experts.
Computer science is a tough subject. Fortunately, our computer science experts are up to the match. No need to stress and have sleepless nights. Our academic writers will tackle all your computer science assignments and deliver them on time. Let us handle all your python, java, ruby, JavaScript, php , C+ assignments!
While psychology may be an interesting subject, you may lack sufficient time to handle your assignments. Don’t despair; by using our academic writing service, you can be assured of perfect grades. Moreover, your grades will be consistent.
Engineering is quite a demanding subject. Students face a lot of pressure and barely have enough time to do what they love to do. Our academic writing service got you covered! Our engineering specialists follow the paper instructions and ensure timely delivery of the paper.
In the nursing course, you may have difficulties with literature reviews, annotated bibliographies, critical essays, and other assignments. Our nursing assignment writers will offer you professional nursing paper help at low prices.
Truth be told, sociology papers can be quite exhausting. Our academic writing service relieves you of fatigue, pressure, and stress. You can relax and have peace of mind as our academic writers handle your sociology assignment.
We take pride in having some of the best business writers in the industry. Our business writers have a lot of experience in the field. They are reliable, and you can be assured of a high-grade paper. They are able to handle business papers of any subject, length, deadline, and difficulty!
We boast of having some of the most experienced statistics experts in the industry. Our statistics experts have diverse skills, expertise, and knowledge to handle any kind of assignment. They have access to all kinds of software to get your assignment done.
Writing a law essay may prove to be an insurmountable obstacle, especially when you need to know the peculiarities of the legislative framework. Take advantage of our top-notch law specialists and get superb grades and 100% satisfaction.
We have highlighted some of the most popular subjects we handle above. Those are just a tip of the iceberg. We deal in all academic disciplines since our writers are as diverse. They have been drawn from across all disciplines, and orders are assigned to those writers believed to be the best in the field. In a nutshell, there is no task we cannot handle; all you need to do is place your order with us. As long as your instructions are clear, just trust we shall deliver irrespective of the discipline.
Our essay writers are graduates with bachelor's, masters, Ph.D., and doctorate degrees in various subjects. The minimum requirement to be an essay writer with our essay writing service is to have a college degree. All our academic writers have a minimum of two years of academic writing. We have a stringent recruitment process to ensure that we get only the most competent essay writers in the industry. We also ensure that the writers are handsomely compensated for their value. The majority of our writers are native English speakers. As such, the fluency of language and grammar is impeccable.
There is a very low likelihood that you won’t like the paper.
Not at all. All papers are written from scratch. There is no way your tutor or instructor will realize that you did not write the paper yourself. In fact, we recommend using our assignment help services for consistent results.
We check all papers for plagiarism before we submit them. We use powerful plagiarism checking software such as SafeAssign, LopesWrite, and Turnitin. We also upload the plagiarism report so that you can review it. We understand that plagiarism is academic suicide. We would not take the risk of submitting plagiarized work and jeopardize your academic journey. Furthermore, we do not sell or use prewritten papers, and each paper is written from scratch.
You determine when you get the paper by setting the deadline when placing the order. All papers are delivered within the deadline. We are well aware that we operate in a time-sensitive industry. As such, we have laid out strategies to ensure that the client receives the paper on time and they never miss the deadline. We understand that papers that are submitted late have some points deducted. We do not want you to miss any points due to late submission. We work on beating deadlines by huge margins in order to ensure that you have ample time to review the paper before you submit it.
We have a privacy and confidentiality policy that guides our work. We NEVER share any customer information with third parties. Noone will ever know that you used our assignment help services. It’s only between you and us. We are bound by our policies to protect the customer’s identity and information. All your information, such as your names, phone number, email, order information, and so on, are protected. We have robust security systems that ensure that your data is protected. Hacking our systems is close to impossible, and it has never happened.
You fill all the paper instructions in the order form. Make sure you include all the helpful materials so that our academic writers can deliver the perfect paper. It will also help to eliminate unnecessary revisions.
Proceed to pay for the paper so that it can be assigned to one of our expert academic writers. The paper subject is matched with the writer’s area of specialization.
You communicate with the writer and know about the progress of the paper. The client can ask the writer for drafts of the paper. The client can upload extra material and include additional instructions from the lecturer. Receive a paper.
The paper is sent to your email and uploaded to your personal account. You also get a plagiarism report attached to your paper.
Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more